Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 15, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238420

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues to represent a global public health issue. The viral main protease (Mpro) represents one of the most attractive targets for the development of antiviral drugs. Herein we report peptidyl nitroalkenes exhibiting enzyme inhibitory activity against Mpro (Ki: 1-10 µM) good anti-SARS-CoV-2 infection activity in the low micromolar range (EC50: 1-12 µM) without significant toxicity. Additional kinetic studies of compounds FGA145, FGA146 and FGA147 show that all three compounds inhibit cathepsin L, denoting a possible multitarget effect of these compounds in the antiviral activity. Structural analysis shows the binding mode of FGA146 and FGA147 to the active site of the protein. Furthermore, our results illustrate that peptidyl nitroalkenes are effective covalent reversible inhibitors of the Mpro and cathepsin L, and that inhibitors FGA145, FGA146 and FGA147 prevent infection against SARS-CoV-2.

2.
Eur J Med Chem ; 258: 115573, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37379675

RESUMEN

Zika and dengue viruses cause mosquito-borne diseases of high epidemic relevance. The viral NS2B-NS3 proteases play crucial roles in the pathogen replication cycle and are validated drug targets. They can adopt at least two conformations depending on the position of the NS2B cofactor. Recently, we reported ligand-induced conformational changes of dengue virus NS2B-NS3 protease by single-molecule Förster resonance energy transfer (smFRET). Here, we investigated the conformational dynamics of the homologous Zika virus protease through an integrated methodological approach combining smFRET, thermal shift assays (DSF and nanoDSF) and 19F NMR spectroscopy. Our results show that allosteric inhibitors favor the open conformation and competitive inhibitors stabilize the closed conformation of the Zika virus protease.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Péptido Hidrolasas , Transferencia Resonante de Energía de Fluorescencia , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales , Conformación Proteica , Espectroscopía de Resonancia Magnética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
3.
Chemistry ; 29(50): e202301855, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37313627

RESUMEN

Fluorometric assays are one of the most frequently used methods in medicinal chemistry. Over the last 50 years, the reporter molecules for the detection of protease activity have evolved from first-generation colorimetric p-nitroanilides, through FRET substrates, and 7-amino-4-methyl coumarin (AMC)-based substrates. The aim of further substrate development is to increase sensitivity and reduce vulnerability to assay interferences. Herein, we describe a new generation of substrates for protease assays based on 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-amides). In this study, we synthesized and tested substrates for 10 different proteases from the serine-, cysteine-, and metalloprotease classes. Enzyme- and substrate-specific parameters as well as the inhibitory activity of literature-known inhibitors confirmed their suitability for application in fluorometric assays. Hence, we were able to present NBD-based alternatives for common protease substrates. In conclusion, these NBD substrates are not only less susceptible to common assay interference, but they are also able to replace FRET-based substrates with the requirement of a prime site amino acid residue.


Asunto(s)
Amidas , Péptido Hidrolasas , Colorantes Fluorescentes/metabolismo , Fluorometría , Endopeptidasas
4.
RSC Med Chem ; 14(5): 969-982, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37252099

RESUMEN

Understanding different contributions to the binding entropy of ligands is of utmost interest to better predict affinity and the thermodynamic binding profiles of protein-ligand interactions and to develop new strategies for ligand optimization. To these means, the largely neglected effects of introducing higher ligand symmetry, thereby reducing the number of energetically distinguishable binding modes on binding entropy using the human matriptase as a model system, were investigated. A set of new trivalent phloroglucinol-based inhibitors that address the roughly symmetric binding site of the enzyme was designed, synthesized, and subjected to isothermal titration calorimetry. These highly symmetric ligands that can adopt multiple indistinguishable binding modes exhibited high entropy-driven affinity in line with affinity-change predictions.

5.
Arch Pharm (Weinheim) ; 356(8): e2300207, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37255416

RESUMEN

COVID-19 has caused many deaths since the first outbreak in 2019. The burden on healthcare systems around the world has been reduced by the success of vaccines. However, population adherence and the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are still challenging tasks to be affronted. In addition, the newly approved drug presents some limitations in terms of side effects and drug interference, highlighting the importance of searching for new antiviral agents against SARS-CoV-2. The SARS-CoV-2 main protease (Mpr o ) represents a versatile target to search for new drug candidates due to its essential role in proteolytic activities responsible for the virus replication. In this work, a series of 190 compounds, composed of 27 natural ones and 163 synthetic compounds, were screened in vitro for their inhibitory effects against SARS-CoV-2 Mpro . Twenty-five compounds inhibited Mpro with inhibitory constant values (Ki ) between 23.2 and 241 µM. Among them, a thiosemicarbazone derivative was the most active compound. Molecular docking studies using Protein Data Bank ID 5RG1, 5RG2, and 5RG3 crystal structures of Mpro revealed important interactions identified as hydrophobic, hydrogen bonding and steric interactions with amino acid residues in the active site cavity. Overall, our findings indicate the described thiosemicarbazones as good candidates to be further explored to develop antiviral leads against SARS-CoV-2. Moreover, the studies showed the importance of careful evaluation of test results to detect and exclude false-positive findings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Antivirales/farmacología , Antivirales/química , Simulación de Dinámica Molecular
6.
Eur J Med Chem ; 247: 115021, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36549112

RESUMEN

Despite several major achievements in the development of vaccines and antivirals, the fight against SARS-CoV-2 and the health problems accompanying COVID-19 are still ongoing. SARS-CoV-2 main protease (Mpro), an essential viral cysteine protease, is a crucial target for the development of antiviral agents. A virtual screening analysis of in-house cysteine protease inhibitors against SARS-CoV-2 Mpro allowed us to identify two hits (i.e., 1 and 2) bearing a methyl vinyl ketone warhead. Starting from these compounds, we herein report the development of Michael acceptors targeting SARS-CoV-2 Mpro, which differ from each other for the warhead and for the amino acids at the P2 site. The most promising vinyl methyl ketone-containing analogs showed sub-micromolar activity against the viral protease. SPR38, SPR39, and SPR41 were fully characterized, and additional inhibitory properties towards hCatL, which plays a key role in the virus entry into host cells, were observed. SPR39 and SPR41 exhibited single-digit micromolar EC50 values in a SARS-CoV-2 infection model in cell culture.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , Antivirales/química , Péptidos , Cetonas/farmacología , Simulación del Acoplamiento Molecular
7.
Arch Pharm (Weinheim) ; 356(4): e2200518, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36480352

RESUMEN

Cyclization of small molecules is a widely applied strategy in drug design for ligand optimization to improve affinity, as it eliminates the putative need for structural preorganization of the ligand before binding, or to improve pharmacokinetic properties. In this work, we provide a deeper insight into the binding thermodynamics of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its linear analogs. Characterization of the thermodynamic binding profiles by isothermal titration calorimetry experiments revealed an unfavorable entropy of the macrocycle compared to the open linear reference ligands. Molecular dynamic simulations and X-ray crystal structure analysis indicated only minor benefits from macrocyclization to fixate a favorable conformation, while linear ligands retained some flexibility even in the protein-bound complex structure, possibly explaining the initially surprising effect of a higher entropic penalty for the macrocyclic ligand.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/metabolismo , Ligandos , Proteínas no Estructurales Virales , Conformación Proteica , Relación Estructura-Actividad , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/farmacología , Termodinámica , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
8.
HardwareX ; 11: e00256, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35509940

RESUMEN

Differential scanning fluorimetry (DSF) is a widely used biophysical technique with applications to drug discovery and protein biochemistry. DSF experiments are commonly performed in commercial real-time polymerase chain reaction (qPCR) thermal cyclers or nanoDSF instruments. Here, we report the construction, validation, and example applications of an open-source DSF system for 176 €, which, in addition to protein-DSF experiments, also proved to be a versatile biophysical instrument for less conventional RNA-DSF experiments. Using 3D-printed parts made of polyoxymethylene, we were able to fabricate a thermostable machine chassis for protein-melting experiments. The combination of blue high-power LEDs as the light source and stage light foil as filter components was proven to be a reliable and affordable alternative to conventional optics equipment for the detection of SYPRO Orange or Sybr Gold fluorescence. The ESP32 microcontroller is the core piece of this openDSF instrument, while the in-built I2S interface was found to be a powerful analog-to-digital converter for fast acquisition of fluorescence and temperature data. Airflow heating and inline temperature control by thermistors enabled high-accuracy temperature management in PCR tubes (±0.1 °C) allowing us to perform high-resolution thermal shift assays (TSA) from exemplary biological applications.

9.
J Antibiot (Tokyo) ; 75(6): 321-332, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440771

RESUMEN

Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.


Asunto(s)
COVID-19 , Infecciones Estafilocócicas , Aminoaciltransferasas , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Biopelículas , Cisteína Endopeptidasas , Humanos , Pruebas de Sensibilidad Microbiana , ARN Viral/farmacología , SARS-CoV-2 , Staphylococcus aureus
10.
ACS Chem Biol ; 17(3): 576-589, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35262340

RESUMEN

Protease inhibitors represent a promising therapeutic option for the treatment of parasitic diseases such as malaria and human African trypanosomiasis. Falcitidin was the first member of a new class of inhibitors of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. Using a metabolomics dataset of 25 Chitinophaga strains for molecular networking enabled identification of over 30 natural analogues of falcitidin. Based on MS/MS spectra, they vary in their amino acid chain length, sequence, acyl residue, and C-terminal functionalization; therefore, they were grouped into the four falcitidin peptide families A-D. The isolation, characterization, and absolute structure elucidation of two falcitidin-related pentapeptide aldehyde analogues by extensive MS/MS spectrometry and NMR spectroscopy in combination with advanced Marfey's analysis was in agreement with the in silico analysis of the corresponding biosynthetic gene cluster. Total synthesis of chosen pentapeptide analogues followed by in vitro testing against a panel of proteases revealed selective parasitic cysteine protease inhibition and, additionally, low-micromolar inhibition of α-chymotrypsin. The pentapeptides investigated here showed superior inhibitory activity compared to falcitidin.


Asunto(s)
Antimaláricos , Proteasas de Cisteína , Malaria , Parásitos , Animales , Antimaláricos/farmacología , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Humanos , Plasmodium falciparum , Espectrometría de Masas en Tándem
11.
J Phys Chem B ; 125(25): 6837-6846, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34137269

RESUMEN

The dengue virus protease (DENV-PR) represents an attractive target for counteracting DENV infections. It is generally assumed that DENV-PR can exist in an open and a closed conformation and that active site directed ligands stabilize the closed state. While crystal structures of both the open and the closed conformation were successfully resolved, information about the prevalence of these conformations in solution remains elusive. Herein, we address the question of whether there is an equilibrium between different conformations in solution which can be influenced by addition of a competitive inhibitor. To this end, DENV-PR was statistically labeled by two dye molecules constituting a FRET (fluorescence resonance energy transfer) couple. Fluorescence correlation spectroscopy and photon-burst detection were employed to examine FRET pair labeled DENV-PRs freely diffusing in solution. The measurements were performed with two double mutants and with two dye couples. The data provide strong evidence that an equilibrium of at least two conformations of DENV-PR exists in solution. The competitive inhibitor stabilizes the closed state. Because the open and closed conformations appear to coexist in solution, our results support the picture of a conformational selection rather than that of an induced fit mechanism with respect to the inhibitor-induced formation of the closed state.


Asunto(s)
Virus del Dengue , Dominio Catalítico , Virus del Dengue/genética , Virus del Dengue/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales
12.
J Chem Inf Model ; 61(4): 2062-2073, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33784094

RESUMEN

During almost all 2020, coronavirus disease 2019 (COVID-19) pandemic has constituted the major risk for the worldwide health and economy, propelling unprecedented efforts to discover drugs for its prevention and cure. At the end of the year, these efforts have culminated with the approval of vaccines by the American Food and Drug Administration (FDA) and the European Medicines Agency (EMA) giving new hope for the future. On the other hand, clinical data underscore the urgent need for effective drugs to treat COVID-19 patients. In this work, we embarked on a virtual screening campaign against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro chymotrypsin-like cysteine protease employing our in-house database of peptide and non-peptide ligands characterized by different types of warheads acting as Michael acceptors. To this end, we employed the AutoDock4 docking software customized to predict the formation of a covalent adduct with the target protein. In vitro verification of the inhibition properties of the most promising candidates allowed us to identify two new lead inhibitors that will deserve further optimization. From the computational point of view, this work demonstrates the predictive power of AutoDock4 and suggests its application for the in silico screening of large chemical libraries of potential covalent binders against the SARS-CoV-2 Mpro enzyme.


Asunto(s)
COVID-19 , Inhibidores de Proteasas , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/farmacología , SARS-CoV-2
13.
Front Mol Biosci ; 8: 804970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047562

RESUMEN

Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with emerging multiresistant isolates causing a significant burden to public health systems. We identified 2-sulfonylpyrimidines as a new class of potent inhibitors against S. aureus sortase A acting by covalent modification of the active site cysteine 184. Series of derivatives were synthesized to derive structure-activity relationship (SAR) with the most potent compounds displaying low micromolar KI values. Studies on the inhibition selectivity of homologous cysteine proteases showed that 2-sulfonylpyrimidines reacted efficiently with protonated cysteine residues as found in sortase A, though surprisingly, no reaction occurred with the more nucleophilic cysteine residue from imidazolinium-thiolate dyads of cathepsin-like proteases. By means of enzymatic and chemical kinetics as well as quantum chemical calculations, it could be rationalized that the S N Ar reaction between protonated cysteine residues and 2-sulfonylpyrimidines proceeds in a concerted fashion, and the mechanism involves a ternary transition state with a conjugated base. Molecular docking and enzyme inhibition at variable pH values allowed us to hypothesize that in sortase A this base is represented by the catalytic histidine 120, which could be substantiated by QM model calculation with 4-methylimidazole as histidine analog.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...